$$
\left.\begin{array}{l}
\lim [f(x)+g(x)]=\lim f(x)+\lim g(x) \\
+\infty+L=+\infty \\
-\infty+L=-\infty
\end{array}\right\} L \geq 0, L<0 .
$$

$$
\lim [f(x) \cdot g(x)]=\lim f(x) \cdot \lim g(x)
$$

$$
+\infty \cdot L=+\infty \rightarrow L>0
$$

$$
-\infty \cdot L=-\infty \rightarrow L>0
$$

$$
+\infty \cdot L=-\infty \rightarrow L<0
$$

$$
-\infty \cdot L=+\infty \rightarrow L<0
$$

$$
+\infty \cdot(+\infty)=+\infty
$$

$$
-\infty \cdot(-\infty)=+\infty
$$

$$
-\infty \cdot(+\infty)=-\infty
$$

$$
+\infty \cdot(-\infty)=-\infty
$$

$$
0 \cdot(\pm \infty) \quad \text { Indeterminació }
$$

$$
\lim \left[\frac{f(x)}{g(x)}\right]=\frac{\lim f(x)}{\lim g(x)}
$$

$$
+\infty / L=+\infty \rightarrow L>0
$$

$$
-\infty / L=-\infty \rightarrow L>0
$$

$$
+\infty / L=-\infty \rightarrow \boldsymbol{L}<\mathbf{0}
$$

$$
-\infty / L=+\infty \rightarrow L<0
$$

$$
\left.\begin{array}{l}
+\infty /(+\infty) \\
-\infty /(-\infty) \\
-\infty /(+\infty) \\
+\infty /(-\infty)
\end{array}\right\} \text { Indeterminació }
$$

0/0 Indeterminació

$$
\begin{aligned}
& +\infty / \mathbf{0}^{+}=+\infty \\
& +\infty / 0^{-}=-\infty \\
& -\infty / \mathbf{0}^{+}=-\infty \\
& -\infty / 0^{-}=+\infty \\
& L / \mathbf{0}^{+}=+\infty \rightarrow L>0 \\
& L / 0^{-}=-\infty \rightarrow L>0 \\
& L / 0^{+}=-\infty \rightarrow L<0 \\
& L / 0^{-}=+\infty \rightarrow L<0 \\
& L /(+\infty)=\mathbf{0}^{+} \rightarrow L>0 \\
& L /(-\infty)=\mathbf{0}^{-} \rightarrow L>0 \\
& L /(+\infty)=\mathbf{0}^{-} \rightarrow L<0 \\
& L /(-\infty)=\mathbf{0}^{+} \rightarrow L<\mathbf{0}
\end{aligned}
$$

$$
\lim [f(x)]^{g(x)}=\lim [f(x)]^{\lim g(x)}
$$

$$
L^{+\infty}=+\infty \rightarrow L>0
$$

$$
L^{-\infty}=0 \rightarrow L>0
$$

$$
L^{+\infty}=0 \rightarrow 0<L<1
$$

$$
L^{-\infty}=+\infty \rightarrow 0<L<1
$$

$$
0^{+\infty}=0
$$

$$
0^{-\infty}=\frac{1}{0^{+\infty}}=\frac{1}{0}=+\infty
$$

$$
0^{L}=0 \rightarrow L>0
$$

$$
\left(0^{+}\right)^{L}=\frac{1}{0^{+}}=+\infty \rightarrow L<0
$$

$$
\left(0^{-}\right)^{L}=\frac{1}{0^{+}}=+\infty \rightarrow L<0 \quad i \quad L=\text { parell }
$$

$$
\left(0^{-}\right)^{L}=\frac{1}{0^{-}}=-\infty \rightarrow L<0 \quad i \quad L=\text { senar }
$$

$$
(+\infty)^{L}=+\infty \rightarrow L>0
$$

$$
(+\infty)^{L}=\frac{1}{+\infty}=0 \rightarrow L<0
$$

$$
(+\infty)^{(+\infty)}=+\infty
$$

$$
(+\infty)^{(-\infty)}=\frac{1}{(+\infty)^{(+\infty)}}=\frac{1}{+\infty}=0
$$

$1^{ \pm \infty}$ Indeterminació $\quad 0^{0} \quad$ Indeterminació $\quad(\pm \infty)^{0} \quad$ Indeterminació

